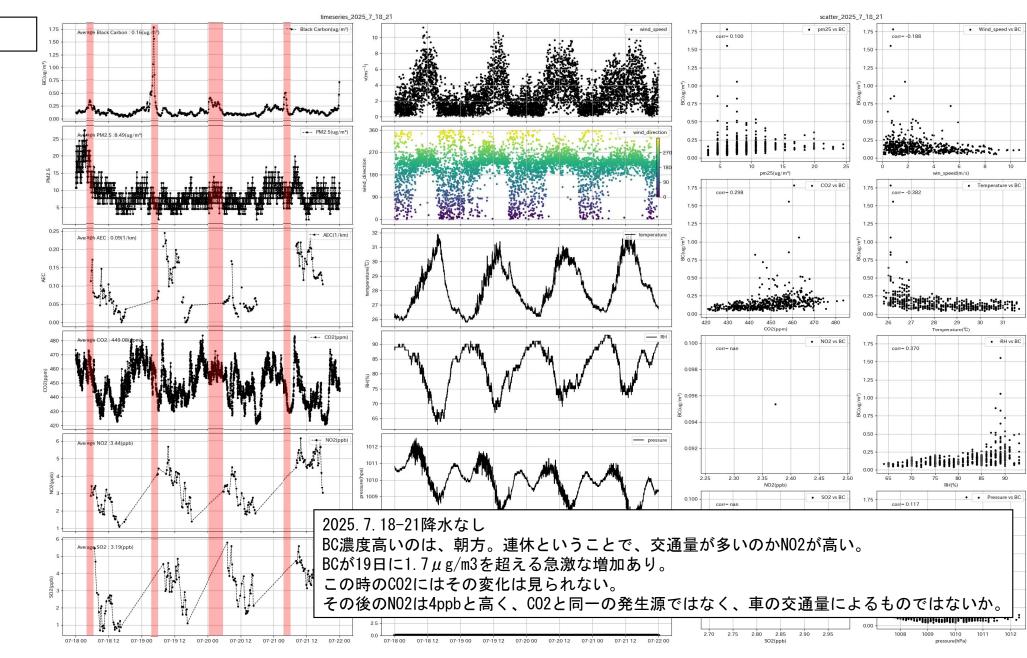
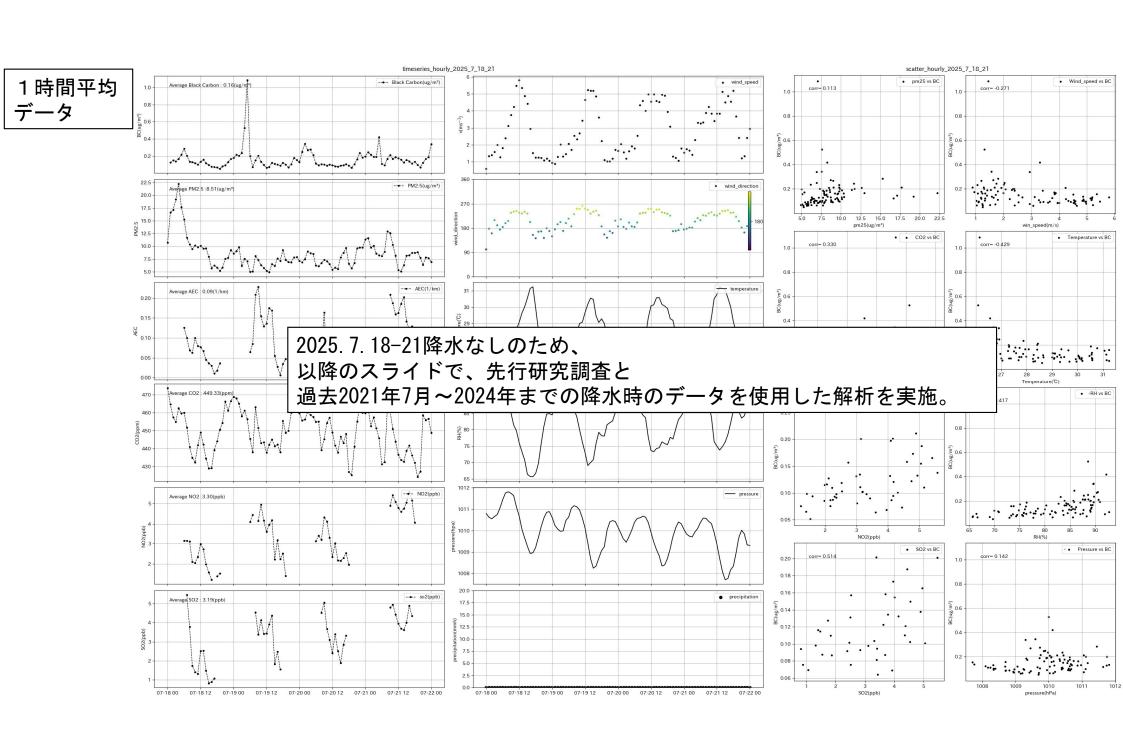
Chiba Campaign 2025

目的

粒子状物質であるBC(ブラックカーボン), $PM_{2.5}$, AEC(エアロゾル消散係数)の時系列変化とその特徴を、気象場(風速・風向・気温・気圧・湿度)やガス成分(CO_2 、 NO_2 、 SO_2)とあわせて分析し、発生源特性、拡散・輸送過程、および大気汚染イベント発生時の振る舞いを考察する。

方法


以下の観点から詳細に検討を行う。


- ・日内変動・季節変動・天気条件の影響を受けてどのように変動するかを把握する。
- ・各成分間の相関関係の解析による発生源特性の評価(例:BCとCO2, NO2の同時変動)
- ・ガス成分と粒子状成分の組み合わせによる排出源(交通、工場、バイオマス燃焼など)の推定

自身研究を日データで確認する。

- ・機械学習モデルにより、△CO2、気象パラメータを説明変数としてBC濃度推定をする。
 - → BC計測なしの場所への応用(広域へ拡張)
- ·BC降水除去影響の考察(降水イベントがあった場合)
 - → BCは降水除去の影響がほとんどなく、CO2変動に依存する。

生データ

2020 Fujino [PM2.5 decrease with precipitation as revealed by single-point ground-based observation]

PM2.5と降水についての研究

- ・降水データ→アメダス前1時間積算値(神奈川県藤沢市)
- PM2. 5→明治市民センターそらまめくん1時間値(神奈川県藤沢市)
- 1時間でのPM2.5の湿性除去率
- ・降水強度を3タイプに分類

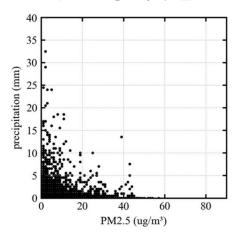
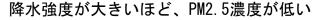
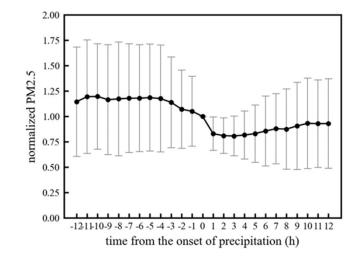
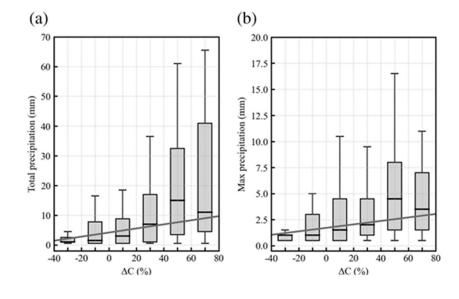





FIGURE 1 Scatter plot of hourly precipitation (vertical axis) and PM_{2.5} concentration (horizontal axis) at Tsujido during the analysis period

1時間後にPM2.5の量が低くなっている →降水後1時間内で除去影響が大きい

降水除去△Cと降水量との関係 →降水量や最大降水量が大きいほど、除去率高い。

2019. Tian LUAN [Below-Cloud Aerosol Scavenging by Different-Intensity Rains in Beijing City]

https://pubs-en.cstam.org.cn/data/article/gxxbywb/preview/pdf/gxxbywb-33-1-luantian.pdf

PM2.5と降水についての研究

- PM2.5-PM10 (FDMS: TEOM 1405-DF)6分ごとに1時間平均を記録
- ・降水量は1分ごとに計測。PM2.5に合わせて、1時間積算量を6分ごとに使用。
- つまり6分毎の前1時間平均値(PM2.5)、1時間積算量(降水)
- 降水イベントの定義 (Chen B. J. et al. (2013)を使用
 - 1時間で0.1mmh⁻¹以下は雨とは認識しない。
 - ・ 降水なしが1時間以上あれば、別の降水イベントとして区別する。
 - 降水イベントを3つのカテゴリーに分類
 - Lingt rain $(0.1 \sim 2.5 \text{ mmh}^{-1})$
 - Moderate rain $(2.6 \sim 7.6 \text{ mmh}^{-1})$
 - Heavy rain $(7.6 \text{ mmh}^{-1} \sim)$

元データは 1分ごとの降水強度 (mm/min または mm/1min)

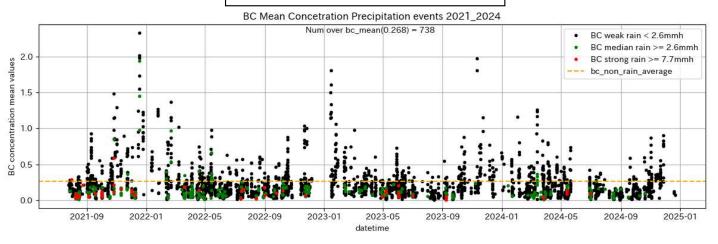
- → それを使って、各1時間の合計降水量 (mm) を計算した
- → それが hourly rainfall rate という形で使用され、
- → さらに その合計が 0.1 mm 以上であれば「rainy hour」 と見なす

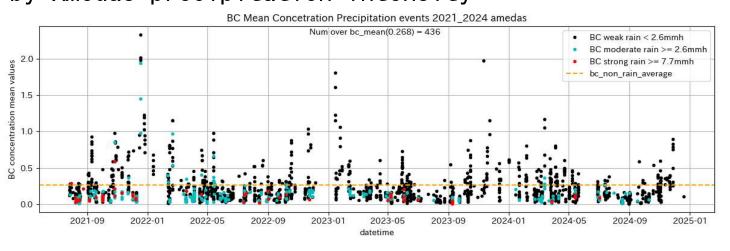
2013 Baojun 『CHEN Statistical Characteristics of Raindrop Size Distribution in the Meiyu Season Observed in Eastern China』

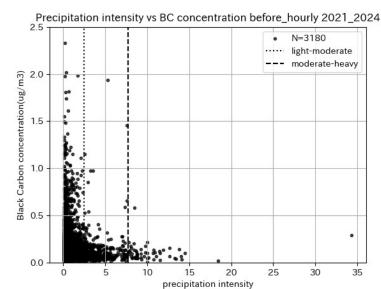
・降水イベントの定義

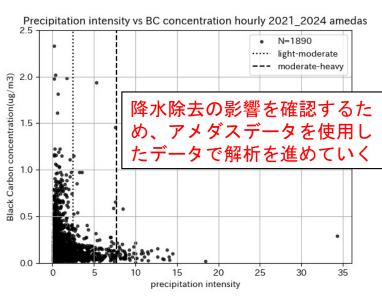
降水についてのみの研究

- 1分おきの降水量計測においての定義 (Tokay and Bashor(2010)より)
- 1分の雨滴が10回以下または0.1mmh⁻¹以下であればノイズとする。
- ・降水イベントは、2つの連続した降雨分の間に1時間以上の無降水期間があることを基準に定義される。
- 2つの rainy minute の間に 60分(=1時間)以上の dry minute があれば、そこでイベントは「区切られる」。逆に、59分間dryでも、その後にrainy minute が来た場合は、イベントは継続しているとみなす。
- さらに30分以下の降水イベントは破棄する。

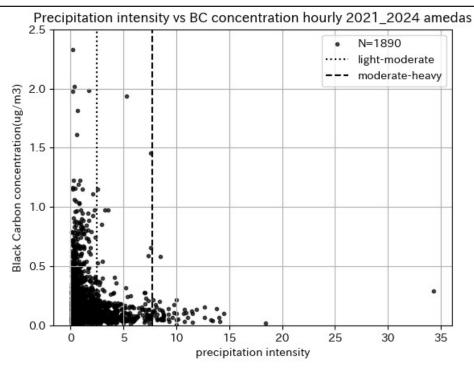

Table 1. Rain events used for the present study and statistical characteristics of rain rate derived from disdrometer data.


measurements. For each 1-min DSD sample, if the
total number of drops is lesser than 10 or a
disdrometer-derived rain rate is lesser than 0.1 mm
h ⁻¹ , then it is disregarded as noise, otherwise it is
considered to be a rainy minute. A rain event is
subsequently defined on the basis of 1 h or a longer
rain-free period between the two consecutive rainy
minutes. Moreover, rain events that lasted lesser than
30 min have been discarded for the sake of data
processing. Finally, the selected 23 rain events consist
of a total of 7996 1-min DSD spectra covering three
Meiyu seasons from 2009 to 2011.

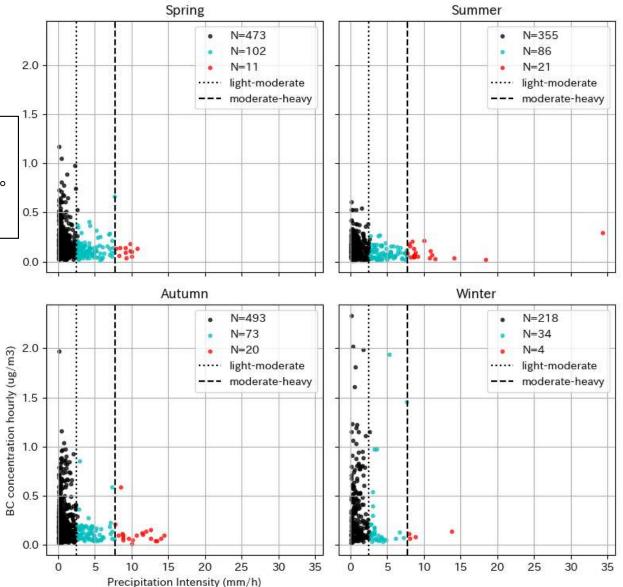

Event no.	Date	Times (LST)	No. of 1-min spectra	Mean and max rain rate (mm h ⁻¹)
1	5-6 Jul 2009	2326-0146	140	0.7, 1.9
2	6 Jul 2009	1600-2045	267	1.3, 4.7
3	7 Jul 2009	1400-1531	92	21.2, 137.3
4	10 Jul 2009	0552-0806	111	10.9, 50.0
5	8-9 Jun 2010	1750-0500	655	3.3, 21.5
6	14 Jun 2010	1453-1624	92	5.7, 34.7
7	2_3 Jul 2010	2206-0328	312	4 7 70 7


「1分のデータ」を「1時間換算の降水強度」に変換し、その強度が0.1 mm/h以上かどうかを基準に「雨かどうか」を判定している。 つまり、データは1分解像度でありながら、mm/h という単位系で判定

Non Amedas Data 2021年~2024年のデータを使用 アメダスデータなし

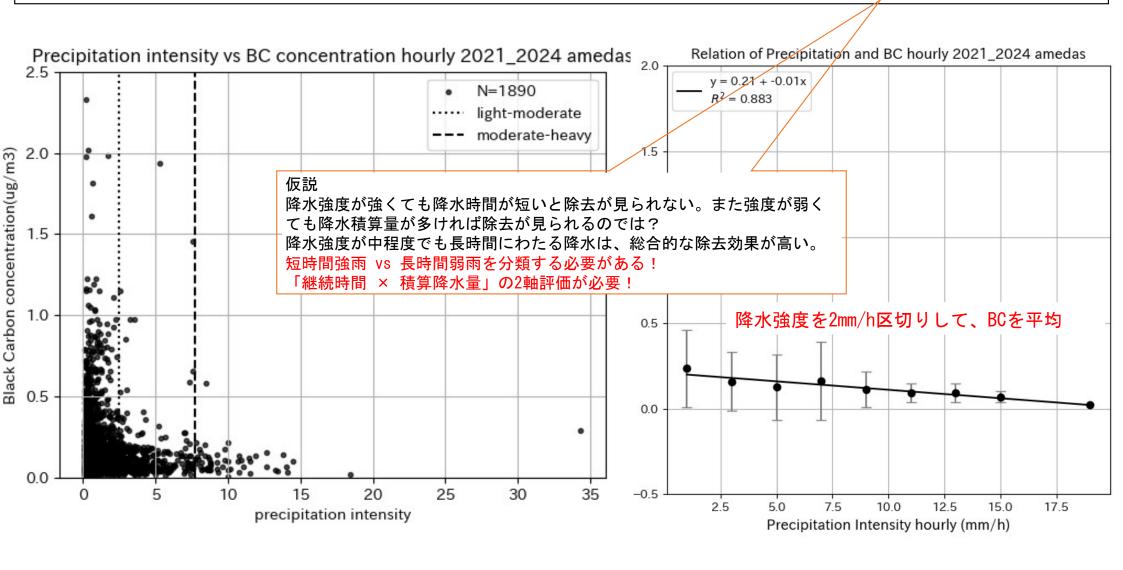






Seasons hourly scatter Precipitation intensity vs Black carbon

2021年~2024年の降水強度vsBCデータ(アメダス使用) 季節別で見ると、いずれも降水強度が大きいほど、BC濃 度は低い。冬は弱い降水時では高濃度BCを記録している。 前1時間平均値を使用したため、降水時間や積算量を見 てみる必要がある。



2021年7月21日~2024年 降水強度 vs BC濃度 降水強度が高いほど、BC濃度は低いことが分かった。

前1時間平均データを使用した、全体傾向を見た。→ 降水イベントを定義して、その降水強度・降水時間・降水積算量で解析

